The effect of dust settling on the appearance of protoplanetary disks

نویسنده

  • C. P. Dullemond
چکیده

We analyze how the process of dust settling affects the spectral energy distribution and optical appearance of protoplanetary disks. Using simple analytic estimates on the one hand, and detailed 1+1-D models on the other hand, we show that, while the time scale for settling down to the equator may exceed the life time of the disk, it takes much less time for even small grains of 0.1 μm to settle down to a few pressure scale heights. This is often well below the original location of the disk’s photosphere, and the disk therefore becomes effectively ’flatter’. If turbulent stirring is included, a steady state solution can be found, which is typically reached after a few × 10 years. In this state, the downward settling motion of the dust is balanced by vertical stirring. Dependent on the strength of the turbulence, the shape of the disk in such a steady state can be either fully flaring, or flaring only up to a certain radius and self-shadowed beyond that radius. These geometries are similar to the geometries that were found for disks around Herbig Ae/Be stars in our previous papers (Dullemond 2002; Dullemond & Dominik A&A in press, henceforth DD04). In those papers, however, the reason for a disk to turn self-shadowed was by loss of optical depth through dust grain growth. Here we show that dust settling can achieve a similar effect without loss of vertical optical depth, although the self-shadowing in this case only affects the outer regions of the disk, while in DD04 the entire disk outside of the puffed-up inner rim was shadowed. In reality it is likely that both grain growth and grain settling act simultaneously. The spectral energy distributions of such self-shadowed — or partly self-shadowed — disks have a relatively weak far-infrared excess (in comparison to flaring disks). We show here that, when dust settling is the cause of self-shadowing, these self-shadowed regions of the disk are also very weak in resolved images of scattered light. A reduction in the brightness was already predicted in DD04, but we find that dust settling is far more efficient than grain growth at dimming the scattered light image of the disk. Settling is also efficient in steepening the spectral energy distribution at midto far-infrared wavelengths. From the calculations with compact grains it follows that, after about 10 years, most disks should be self-shadowed. The fact that some older disks are still observed with the characteristics of flaring disks therefore seems somewhat inconsistent with the time scales predicted by the settling model based on compact grains. This suggests that perhaps even the small grains (. 0.1μm) have a porous or fractal structure, slowing down the settling. Or it could mean that the different geometries of observed disks is merely a reflection of the turbulent state of these disks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dust settling in local simulations of turbulent protoplanetary disks

In this paper, we study the effect of MHD turbulence on the dynamics of dust particles in protoplanetary disks. We vary the size of the particles and relate the dust evolution to the turbulent velocity fluctuations. We performed numerical simulations using two Eulerian MHD codes, both based on finite difference techniques: ZEUS– 3D and NIRVANA. These were local shearing box simulations incorpor...

متن کامل

Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution

Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation fo...

متن کامل

Dust Coagulation and Settling in Layered Protoplanetary Disks

Previous models of dust growth in protoplanetary disks considered either uniformly laminar or turbulent disks. This Letter explores how dust growth occurs in a layered protoplanetary disk in which the magnetorotational instability generates turbulence only in the surface layers of a disk. Two cases are considered: a completely laminar dead zone and a dead zone in which turbulence is “stirred up...

متن کامل

3D SPH simulations of grain growth in protoplanetary disks

We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and test it with the analytical expression of grain growth given by Stepinski & Valageas (1997) in simulations of a typical T Tauri disk around a one ...

متن کامل

Dust Size Growth and Settling in a Protoplanetary Disk

We have studied dust evolution in a quiescent or turbulent protoplanetary disk by numerically solving coagulation equation for settling dust particles, using the minimum mass solar nebular model. As a result, if we assume an ideally quiescent disk, the dust particles settle toward the disk midplane to form a gravitationally unstable layer within 2× 103–4× 10yr at 1–30 AU, which is in good agree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004